Update Data Type
Update DataType Mutation
Updates an existing data type definition in the system.
Arguments
id
ID!
The ID of the data type to update
input
UpdateDataTypeInput!
Input data for updating the data type
Return Type
DataType - The updated data type object.
Input Fields
UpdateDataTypeInput:
name
String
Name of the data type
description
String
Optional description of the data type
clearDescription
Boolean
Clear the description field
jsonSchema
String
JSON schema definition
frontendSchema
String
Optional frontend schema definition
clearFrontendSchema
Boolean
Clear the frontend schema field
Usage Example
Update Strategies
Schema Evolution
When updating JSON schemas, consider:
Backward Compatibility: Ensure existing data remains valid
Field Addition: New optional fields are safe to add
Field Removal: Removing fields may break existing data
Validation Changes: Stricter validation may invalidate existing records
Frontend Schema Updates
The frontendSchema field provides UI hints for form generation:
Update field types and labels
Add new form fields for new schema properties
Remove obsolete UI elements
Update validation rules and help text
Field Clearing
Use clear flags to remove optional fields:
clearDescription: true- Removes the descriptionclearFrontendSchema: true- Removes the frontend schema
Common Update Scenarios
Schema Enhancement
Add new optional fields to accommodate evolving business needs
Update validation rules to enforce data quality
Modify field types to support new data formats
Add enum values for new category options
UI Improvements
Update frontend schema to improve form usability
Add better field labels and help text
Reorganize field order for better user experience
Add conditional field visibility rules
Maintenance Updates
Fix validation issues in existing schemas
Update descriptions for better documentation
Align schemas with current business processes
Remove deprecated fields and constraints
Validation Considerations
JSON Schema Validation
Ensure the JSON schema is syntactically valid
Test schema against existing data before updating
Consider migration path for existing records
Document breaking changes for dependent systems
Impact Assessment
Before updating a data type:
Identify entities using this data type
Check for data compatibility issues
Plan data migration if needed
Notify affected users and systems
Best Practices
Version Control: Keep track of schema changes over time
Testing: Validate new schemas against sample data
Documentation: Update descriptions to reflect changes
Communication: Notify stakeholders of significant changes
Rollback Plan: Have a plan to revert problematic changes
Gradual Updates: Make incremental changes rather than major overhauls
Error Handling
Updates may fail due to:
Invalid JSON: Malformed JSON schema syntax
Schema Conflicts: New schema incompatible with existing data
Permission Issues: Insufficient rights to modify data types
Dependency Violations: Other systems depend on current schema structure
Notes
Schema changes affect all entities using this data type
Consider creating new data types instead of modifying critical existing ones
Test schema changes in development environments first
Monitor system performance after schema updates
Keep backup copies of working schemas before making changes
Last updated
Was this helpful?
